Isoperimetric Numbers of Regular Graphs of High Degree with Applications to Arithmetic Riemann Surfaces
نویسندگان
چکیده
We derive upper and lower bounds on the isoperimetric numbers and bisection widths of a large class of regular graphs of high degree. Our methods are combinatorial and do not require a knowledge of the eigenvalue spectrum. We apply these bounds to random regular graphs of high degree and the Platonic graphs over the rings Zn. In the latter case we show that these graphs are generally nonRamanujan for composite n and we also give sharp asymptotic bounds for the isoperimetric numbers. We conclude by giving bounds on the Cheeger constants of arithmetic Riemann surfaces. For a large class of these surfaces these bounds are an improvement over the known asymptotic bounds.
منابع مشابه
On the Asymptotic Isoperimetric Constants for Riemann Surfaces and Graphs
We study the behavior of the Cheeger isoperimetric constant on infinite families of graphs and Riemann surfaces, and its relationship to the first eigenvalue λ1 of the Laplacian. We adapt probabilistic arguments of Bollobás to the setting of Riemann surfaces, and then show that Cheeger constants of the modular surfaces are uniformly bounded from above away from the maximum value. We extend this...
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملJ an 2 00 7 GRAPHS , ARITHMETIC SURFACES , AND THE RIEMANN - ROCH THEOREM
We use the theory of arithmetic surfaces to show that the Riemann-Roch theorem for Q-graphs is a direct consequence of the usual Riemann-Roch theorem for curves in algebraic geometry.
متن کاملConstructing Cayley Graphs via Tesselations of Riemann Surfaces
We exhibit an explicit action of the modular group on certian arithmetic Riemann Surfaces. We then show how this allows a nice characterization of certain graphs associated to these surfaces.
متن کاملA Note on Edge Isoperimetric Numbers and Regular Graphs
This note resolves an open problem asked by Bezrukov in the open problem session of IWOCA 2014. It shows an equivalence between regular graphs and graphs for which a sequence of invariants presents some symmetric property. We extend this result to a few other sequences.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 18 شماره
صفحات -
تاریخ انتشار 2011